Advanced Macroeconomics
9. The Solow Model

Karl Whelan

School of Economics, UCD

Spring 2015
Recall that economic growth can come from capital deepening or from improvements in total factor productivity.

Implies growth can come about from saving and investment or from improvements in productive efficiency.

This lecture looks at a model examining role these two elements play in achieving sustained economic growth.

The model was developed by Robert Solow, whose work on growth accounting we discussed in the last lecture.
Production Function

Assume a production function in which output depends upon capital and labour inputs as well as a technological efficiency parameter, A.

$$Y_t = AF(K_t, L_t)$$

It is assumed that adding capital and labour raises output

$$\frac{\partial Y_t}{\partial K_t} > 0$$
$$\frac{\partial Y_t}{\partial L_t} > 0$$

However, there are diminishing marginal returns to capital accumulation, so extra amounts of capital gives progressively smaller and smaller increases in output.

This means the second derivative of output with respect to capital is negative.

$$\frac{\partial^2 Y_t}{\partial K_t} < 0$$
Diminishing Returns

Output vs. Capital

Output

Capital
Further Assumptions

- Closed economy with no government sector or international trade. This means all output takes the form of either consumption or investment
 \[Y_t = C_t + I_t \]

- And that savings equals investment
 \[S_t = Y_t - C_t = I_t \]

- Stock of capital changes over time according to
 \[\frac{dK_t}{dt} = I_t - \delta K_t \]

- Change in capital stock each period depends positively on savings and negatively on depreciation, which is assumed to take place at rate \(\delta \).

- Assumes that consumers save a constant fraction \(s \) of their income
 \[S_t = sY_t \]
Capital Dynamics in the Solow Model

- Because savings equals investment in the Solow model, this means investment is also a constant fraction of output

\[I_t = sY_t \]

- So we can re-state the equation for changes in the stock of capital

\[\frac{dK_t}{dt} = sY_t - \delta K_t \]

- Whether the capital stock expands, contracts or stays the same depends on whether investment is greater than, equal to or less than depreciation.

\[\frac{dK_t}{dt} > 0 \text{ if } \delta K_t < sY_t \]

\[\frac{dK_t}{dt} = 0 \text{ if } \delta K_t = sY_t \]

\[\frac{dK_t}{dt} < 0 \text{ if } \delta K_t > sY_t \]
Capital Dynamics

- If the ratio of capital to output is such that

\[\frac{K_t}{Y_t} = \frac{s}{\delta} \]

then the stock of capital will stay constant.

- When the level of capital is low, \(sY_t \) is greater than \(\delta K \). As the capital stock increases, the additional investment tails off but the additional depreciation does not, so at some point \(sY_t \) equals \(\delta K \).

- If we start out with a high stock of capital, then depreciation, \(\delta K \), will tend to be greater than investment, \(sY_t \) and the stock of capital will decline until it reaches \(K^* \).

- This an example of what economists call *convergent dynamics*.

- If nothing else in the model changes, there will be a defined level of capital that the economy converges towards, no matter where the capital stock starts.
Capital Dynamics in The Solow Model

Investment, Depreciation

Investment sY

Depreciation δK

Capital, K

K^*
The Solow Model: Capital and Output

- Investment, sY
- Depreciation, δK
- Output, Y
- Consumption

Diagram showing the relationships between investment, depreciation, output, and consumption in the Solow Model.
Convergence Dynamics in Practice

- The Solow model predicts economies reach equilibrium levels of output and capital consistent with their underlying features, no matter where they start from.

- Does the evidence support this idea?

- A number of extreme examples show economies having far less capital than is consistent with their fundamental features (e.g. after wars).

- Generally supported Solow's prediction that these economies tend to recover from these setbacks and return to their pre-shock levels of capital and output.

- For example, both Germany and Japan grew very strongly after the WW2.

- Another extreme example is study by Edward Miguel and Gerard Roland of the long-run impact of U.S. bombing of Vietnam in the 1960s and 1970s. Despite large differences in the extent of damage inflicted on different regions, Miguel and Roland found little evidence for lasting relative damage on the most-bombed regions by 2002. (Note this is not the same as saying there was no damage to the economy as a whole).
Effect of a Change in Savings

Now consider what happens when the economy has settled down at an equilibrium unchanging level of capital K_1 and then there is an increase in the savings rate from s_1 to s_2.

Line for investment shifts upwards: For each level of capital, the level of output associated with it translates into more investment.

Starting at the initial level of capital, K_1, investment now exceeds depreciation.

This means the capital stock starts to increase until it reaches its new equilibrium level of K_2.
The Solow Model: Increase in Investment

Investment, Depreciation

Capital, K

Old Investment s_1Y

New Investment s_2Y

Depreciation δK

Karl Whelan (UCD)

The Solow Model

Spring 2015
The Solow Model: Effect on Output of Higher Investment

\[Y = \frac{K}{\delta} \]

\[Y = \frac{K}{\delta} \]

\[K_1 \quad K_2 \]

Investment, Depreciation

Output

Capital, K

Depreciation \(\delta K \)

New Investment \(s_2 Y \)

Old Investment \(s_1 Y \)
Effect of a Change in Depreciation

Now consider what happens when the economy has settled down at an equilibrium level of capital K_1 and then there is an increase in the depreciation rate from δ_1 to δ_2.

The depreciation schedule shifts up from the original depreciation rate, δ_1, to the new schedule associated with δ_2.

Starting at the initial level of capital, K_1, depreciation now exceeds investment.

This means the capital stock starts to decline, and continues until capital falls to its new equilibrium level of K_2.

The increase in the depreciation rate leads to a decline in the capital stock and in the level of output.
The Solow Model: Increase in Depreciation

Investment, Depreciation

New Depreciation $\delta_2 K$

Old Depreciation $\delta_1 K$

Capital, K

Investment sY

Karl Whelan (UCD)

The Solow Model

Spring 2015
Increase in Technological Efficiency

- Now consider what happens when technological efficiency A_t increases.
- Because investment is given by

$$I_t = sY_t = sAF(K_t, L_t)$$

- A one-off increase in A thus has the same effect as a one-off increase in s.
- Capital and output gradually rise to a new higher level.
The Solow Model: Increase in Technological Efficiency

Graph Details:
- **Investment, Depreciation** axis.
- **Capital, K** axis.
- **Depreciation δK**.

Equations:
- Old Technology: $A_1 F(K, L)$.
- New Technology: $A_2 F(K, L)$.

Key Points:
- K_1 and K_2 indicate changes in capital.
- The graph illustrates the impact of technology on investment and depreciation.
Technology Versus Savings as Sources of Growth

- The Solow model shows a one-off increase in technological efficiency, A_t, has same effects as a one-off increase in the savings rate, s.

- However, there are likely to be limits in any economy to the fraction of output that can be allocated towards saving and investment, particularly if it is a capitalist economy in which savings decisions are made by private citizens.

- On the other hand, there is no particular reason to believe that technological efficiency A_t has to have an upper limit. Indeed, growth accounting studies tend to show steady improvements over time in A_t in most countries.

- Going back to Young’s paper on Hong Kong and Singapore discussed in the last lecture, you can see now why it matters whether an economy has grown due to capital deepening or TFP growth.

- The Solow model predicts that a policy of encouraging growth through more capital accumulation will tend to tail off over time producing a once-off increase in output per worker. In contrast, a policy that promotes the growth rate of TFP can lead to a sustained higher growth rate of output per worker.
The Capital-Output Ratio with Steady Growth

- Consider how the capital stock behaves when the economy grows at steady constant rate G^Y.

- The capital output ratio $\frac{K_t}{Y_t}$ can be written as $K_t Y_t^{-1}$. So the growth rate of the capital-output ratio can be written as

$$G_t^K = G_t^{Y}$$

- This means the growth rate of the capital-output ratio is

$$G_t^K = s \frac{Y_t}{K_t} - \delta - G^Y$$

- Convergence dynamics for the capital-output ratio:

$$G_t^K > 0 \text{ if } \frac{K_t}{Y_t} < \frac{s}{\delta + G^Y}$$

$$G_t^K = 0 \text{ if } \frac{K_t}{Y_t} = \frac{s}{\delta + G^Y}$$

$$G_t^K < 0 \text{ if } \frac{K_t}{Y_t} > \frac{s}{\delta + G^Y}$$
Capital Dynamics in a Growing Economy

\[\text{Depreciation and Growth (} \delta + G' \text{)}K \]

\[\text{Investment } sY \]

\[\text{Capital, } K \]

\[\text{Investment, Depreciation} \]

Karl Whelan (UCD)

The Solow Model

Spring 2015 20 / 29
Back to Piketty

Piketty has a different argument for why capital may grow faster than income that relates to the result we have just derived.

Define a net savings rate as

$$I_t - \delta K_t = \tilde{s} Y_t$$

In other words, defined like this, \tilde{s} is a savings rate that subtracts off the share of GDP taken up by capital depreciation.

In this case

$$G_t^K = \tilde{s} \frac{Y_t}{K_t} - G_Y$$

This gives convergence dynamics in terms of this net savings rate.

$$G_t^K > 0 \text{ if } \frac{K_t}{Y_t} < \frac{\tilde{s}}{G_Y}$$

$$G_t^K = 0 \text{ if } \frac{K_t}{Y_t} = \frac{\tilde{s}}{G_Y}$$

$$G_t^K < 0 \text{ if } \frac{K_t}{Y_t} > \frac{\tilde{s}}{G_Y}$$
An Ever-Increasing Capital-Output Ratio?

- In this formulation, the steady-state capital-output ratio is \(\frac{K_t}{Y_t} = \frac{\tilde{s}}{G_Y} \).

- Piketty has argued that growth appears to be slowing around the world and thus, with \(G^Y \) in the denominator heading towards zero, the capital-output ratio is likely to keep rising.

- The idea that slow growth will raise the capital-output ratio also holds for the standard Solow model formulation in which the capital-output ratio converges to \(\frac{s}{\delta + G^Y} \).

- Piketty’s equation suggests that when \(G^Y \) tends towards zero \(\frac{K_t}{Y_t} \) heads towards infinity.

- This is not a very sensible prediction. We can show that in the standard model \(\tilde{s} = \frac{sG_Y}{G_Y + \delta} \)

so net saving rates will tend to zero when output growth tends to zero. Both numerator and denominator in Piketty’s formula will tend towards zero if growth goes to zero. Slower output growth is likely to raise the ratio of capital to income, but it is not likely to head towards infinity!
A Formula for Steady Growth

- Cobb-Douglas production function

\[Y_t = A_t K_t^\alpha L_t^{1-\alpha} \]

- This means output growth is determined by

\[G_Y = G_A + \alpha G_K + (1 - \alpha) G_L \]

- Assume \(G_L = n \) and \(G_A = g \) then we have

\[G_Y = g + \alpha G_K + (1 - \alpha) n \]

- But we know from capital-output dynamics that capital must be growing at the same rate as output if the growth rate is constant. This gives

\[G_Y = \frac{g}{1 - \alpha} + n \]

- And the growth rate of output per worker is

\[G_Y - n = \frac{g}{1 - \alpha} \]
Why Growth Accounting Can Be Misleading

- Consider a country that has a constant share of GDP allocated to investment but is experiencing steady growth in TFP.

- The Solow model predicts that this economy should experience steady increases in output per worker and increases in the capital stock.

- A growth accounting exercise may conclude that a certain percentage of growth stems from capital accumulation.

- But ultimately, in this case, all growth (including the growth in the capital stock) actually stems from growth in TFP.

- The moral here is that pure accounting exercises may miss the ultimate cause of growth.
In “The Myth of Asia’s Miracle”, Krugman discusses a number of examples of cases where economies where growth was based on largely on capital accumulation. He includes the case of Asian economies like Singapore, which we discussed previously.

Another interesting case he focuses on is the economy of the Soviet Union. The Soviet economy grew strongly after World War 2 and many predicted it would overtake Western economies.

However, some economists that examined the Soviet economy were less impressed (longer quote in notes).

“But what they actually found was that Soviet growth was based on rapid growth in inputs—end of story. The rate of efficiency growth was not only unspectacular, it was well below the rates achieved in Western economies. Indeed, by some estimates, it was virtually nonexistent.... Because input-driven growth is an inherently limited process, Soviet growth was virtually certain to slow down. Long before the slowing of Soviet growth became obvious, it was predicted on the basis of growth accounting.”
McQuinn-Whelan Projections for Capital Growth

Forecast for Capital-Output Ratio Convergence

Capital Output Ratio

Capital Stock Growth

Karl Whelan (UCD)

The Solow Model

Spring 2015
McQuinn-Whelan Estimates of Impact of Reforms

Impact of Labour and Pension Reforms

Output Growth

Output Per Hour Growth
Things to Understand from this Topic

1. The assumptions of the Solow model.
2. The rationale for diminishing marginal returns to capital accumulation.
3. The Solow model’s predictions about convergent dynamics.
4. Historical examples of convergent dynamics.
5. Effects of changes in savings rate, depreciation rate and technology in the Solow model.
6. Why technological progress is the source of most growth.
7. Convergence dynamics for the capital-output ratio in a growing economy.
8. Piketty’s formula for the steady capital-output ratio.
10. Why growth accounting calculations can underestimate the role of technological progress.
12. McQuinn and Whelan on the euro area.