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Stochastic Dynamic Programming
Suppose we altered our problem to be of the form:

max
ut ,xt

E0

[
T∑
t=0

βtF (xt , ut , εt)

]

subject to
xt+1 = g (xt , ut , εt)

where εt was a set of mean-zero random shocks from a known distribution.

This looks like it must be a much more complicated problem but the logic of
dynamic programming still holds and we have a Bellman equation of the form

Vt (xt , εt) = max
ut

[F (xt , ut , εt) + βEtVt+1 (g (xt , ut , εt))]

The first-order conditions for this problem are obtained in a similar fashion to
the deterministic case.
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First-Order Conditions

The first-order conditions take a familiar form

∂F (xt , u
∗
t , εt)

∂u
+ βEt
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V ′t+1 (g (xt , u

∗
t , εt))

∂g (xt , u
∗
t , εt)

∂u

∣∣∣∣xt] = 0

V ′t+1 (xt+1) =
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xt+1, u

∗
t+1, εt

)
∂x

+βEt+1
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(
g
(
xt+1, u

∗
t+1, εt
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∗
t+1

)
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Karl Whelan (UCD) Stochastic Dynamic Programming Autumn 2023 3 / 34



Markov Uncertainty
In our deterministic dynamic programming examples, we solved for value
functions that depended on a single state variable. We will now look at
examples in which the value function also depends on a second state variable,
one that evolves exogenously and stochastically over time according to a
Markov process.

Specifically, we formulate our problem to include a stochastic state variable st
so that our value function is

Vt (xt , st) = max
ut

[F (xt , ut , st) + βEt [Vt+1 (g (xt , ut , st) , st+1) | st ]

Because of the assumption that st is a Markov process, we don’t need to
condition on anything other than st when formulating probabilities of different
possible values of st+1.

Because of uncertainty, we cannot any longer be sure what the value function
for next period will look like once we have chosen a value for our control
variable, ut . We need to average over all the possible values of st−1 given the
current value of st How would we calculate Et [Vt+1 (g (xt , ut) , st+1 )| st ] ?
This looks complicated but we can explain how to calculate it using a
simplified example.
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Two-State Markov Chain Uncertainty

As we have discussed, in numerical implementations, it is not possible to
calculate the value function at every possible value of the state variables.

So let us decide to only (at first) calculate the value function for a limited
number of values of our endogenous state variable xt (assets in the life-cycle
model). Call these values (γ1, γ2, ...., γK ).

Let’s also assume that st can take values of either st = µ1 or st = µ2 and its
changes over time are determined by a 2-state Markov chain with transition
matrix Π, with entries πij (the i ’th row and j ’th column) describing the
probability of moving from st = µi to st+1 = µj .

Π =

(
π11 π12
π21 π22

)
where

π11 + π12 = π21 + π22 = 1

Let’s figure out how to calculate Et [Vt+1 (γm, st+1 )| st ] for all the values of
γm on our grid.
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Using Matrices to Store Value Functions
Let

V t+1
mj = Vt+1 (xt+1 = γm, | st+1 = µj)

We can summarise the value function at time t + 1 with the following K × 2
matrix.

V t+1 =


V t+1
11 V t+1

12

V t+1
21 V t+1

22

. .

. .

. .
V t+1
K1 V t+1

K2


We can use the elements of this matrix to calculate all the expected values
Et [Vt+1 (γm, st+1 )| st ] which we require.

If st = µ1, then the expected value once xt+1 = γm is

EtVt+1 [(xt+1 = γm, | st = µ1)] = π11V
t+1
m1 + π12V

t+1
m2

If st = µ2, then this expected value is

EtVt+1 [(xt+1 = γm, | st = µ2)] = π21V
t+1
m1 + π22V

t+1
m2
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Calculating Expected Values for States

This means we can summarise all of the values for Et [Vt+1 (γm, st+1 )| st ] in
a K × 2 matrix, with the first column showing the expected values when
st = µ1 and the second column showing the expected values when st = µ2.

π11V
t+1
11 + π12V

t+1
12 π21V

t+1
11 + π22V

t+1
12

π11V
t+1
21 + π12V

t+1
12 π21V

t+1
21 + π22V

t+1
22

. .

. .

. .
π11V

t+1
K1 + π12V

t+1
K2 π21V

t+1
K1 + π22V

t+1
K2


This matrix can be simplified to be

V t+1
11 V t+1

12

V t+1
21 V t+1

22

. .

. .

. .
V t+1
K1 V t+1

K2


(
π11 π21
π12 π22

)
= V t+1Π′
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Numerical Calculation for the Expected Value Function

This gives a method for calculating the expected future values
Et [Vt+1 (γm, st+1 )| st ] at each of the points on our xt+1 grid.

I Stack all the possible value function outcomes at time t + 1 into a
matrix with rows for each value of xt+1 on our grid and columns for each
value of st+1.

I Then multiply this value function matrix by the transpose of the Markox
transition matrix for st .

I This fully generalises to the case of an N-state Markov chain.

This makes the code for the stochastic version of our programme relatively
simple. A single matrix multiplication is doing all the extra calculations
associated with the problem being stochastic rather than deterministic.

With these expected future values calculated, the optimisation problem for
choosing ut is now just as it was before: Optimal decision making trades off
the impact of a higher ut on today’s payoff F (xt , ut) against its impact on
tomorrow’s expected value function Et [Vt+1 (g (xt , ut) , st+1 )| st ] .
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An Example: Consumption and Savings with Stochastic
Income

We will implement these methods to solve a model in which a consumer lives
for T periods.

Each period, the consumer’s income is either one or zero with transitions
between states determined by a Markov chain.

We will start with the case in which there is an equal chance each period of
income being one or zero. We implement this via a two-state Markov chain
with transition probabilites both equal to 0.5.

There is no retirement so this is not a motivation for building up assets in this
model.

Assets are built up solely due to precautionary savings and these get run down
at the end of life.

Let’s look at the programme we use to solve this model.
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Program Set Up: Specify Parameters Including the Markov
Chain.
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Policy Functions for Stochastic Dynamic Programming

In our previous programme, we calculated “policy rules” for consumption i.e.
for each age, we calculated the optimal level of consumption given the
starting amount of assets they had. This meant the central part of the
programme had a double loop: Looping over time and then for each period
looping over starting assets.

This programme uses a triple loop: Looping over time, over start-of-period
assets and over the one-zero income variable.

This produces a set of policy rules for optimal consumption at each point in
time given start-of-period assets and the realisation of income.

Note the use again of a double grid. We initially calculate the value functions
over a grid of size 300 but then interpolate that over a grid of size 10,000.
The grid of size 10,000 is then used to calculate optimal consumption rules.

These rules are then combined with Markov chain simulations of st to simulate
consumption and assets over a 60 period lifetime for 100,000 different
simulated households for the final value of β examined. We then calculate the
average path for consumption and assets across all of these simulations.
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Program Set Up: Policy Rules For Each Point on the Asset
Grids and Each Value of Income and Each Point in Time
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Main Programme Code is Very Similar
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Simulating the Solved Model 100,000 Times For a Fixed β
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Consumption and Cash-on-Hand

Our programme calculates policy rules for optimal consumption at each point
in time given start-of-period assets and the realisation of income.

We have set T = 60. Let’s take a look at the policy rules at mid-life, t = 30.

The graph on the next page shows the consumption spending rules at t = 30
for the high income state (Yt = 1) and for the low income state (Yt = 0).

Not surprisingly, people consume more when the get the good draw for
income than when they get the bad one. They also consume more if they
have more assets at the start of the period.

This might look like there is quite different optimal policy rules depending on
the outcome for income but underlying behaviour can actually be modelled as
a function of cash-on-hand, i.e. starting period assets plus income.

The chart on the following page shows that once we plot the consumption
rules against cash on hand, the behaviour is really the same in both states.
This because the households are equally likely to be in each state next period.

Note that the MPC from cash-on-hand is quite high at low levels of
cash-on-hand but tails off as people build up a larger buffer.
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Consumption Decision Rules at Mid-Life For Both Income
States r = 1/0.94− 1, β = 0.90, γ = 1.5.
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Consumption Decision Rules at Mid-Life For Both Income
States r = 1/0.94− 1, β = 0.90, γ = 1.5.
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Average Paths for Consumption and Assets

Previously, we discussed how uncertainty about the future could lead to
consumption having an upward tilt. The optimal behaviour involved protecting
against this uncertainty by building up a stock of “precautionary savings”.

The graphs a few pages down show the average paths of assets and
consumption across 100,000 simulated households for five different discount
rates with our iid income process.

We set r = 1/0.94− 1, so without uncertainty and with no borrowing
constraints, we would see the following

I Those with β > 0.94 would have growing consumption, financed by
building up assets before running them down to zero.

I Those with β = 0.94 would have perfectly smooth consumption with
assets averaging zero at all times.

I Those with β < 0.94 would have falling consumption, financed by
borrowing before paying this off later at the expense of lower
consumption.

Let’s see what happens with our uncertainty model (which also incorporates
borrowing constraints).
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Precautionary Savings Under Uncertainty

In our simulation, with uncertain income and negative assets ruled out, we see
the following:

I For those with β > 0.94, things are not so different from a model with
certainty about income. They build up large stocks of savings and run
them down. There is a burst of particularly high average consumption
near the end of life as precautionary savings are not needed as much
anymore.

I For those with β = 0.94, consumption grows as they age. This is
particularly true when young (because they are building up precautionary
savings stocks) and when old (when they decide they no longer need
those stocks).

I For those with β < 0.94, who would have preferred a downward-sloping
consumption profile, there is an upward-sloping consumption early in life
as they build up precautionary savings buffers, then average consumption
and assets flatten out before a late consumption burst running down
their precautionary savings.

These charts show that precautionary savings due to uncertainty can generate
very different outcomes from models based on perfect certainty.
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Average Time Path for Assets With IID Income Draws
Averaging 0.5. r = 1/0.94− 1, γ = 1.5.
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Average Time Path for Consumption and Income With IID
Income Draws Averaging 0.5. r = 1/0.94− 1, γ = 1.5.
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A More Realistic Model of Income and Unemployment

The income process we have just used is not very realistic. Whether people
receive income this period has no influence on whether they will receive
income next period.

In reality, once people are in employment and receiving income, they are likely
to continue being in employment next period.

I have replaced the iid income model with a model in which the probability of
remaining employed next period once in employment in 90 percent and the
probability of remaining unemployed once out of a job (we still assume zero
income in this state) is 50 percent. I have calibrated the income people earn
while employed so that average income is still equal to 0.5, matching the
previous model.

The decision rules at t = 30 generated by this process is on the next page.
Employed people have more security so they consume more from
cash-on-hand than unemployed people.

The following two pages show the average time paths for assets. While
qualitatively similar to the previous ones, the level of precautionary savings is
lower because the income process generates less uncertainty.

Karl Whelan (UCD) Stochastic Dynamic Programming Autumn 2023 22 / 34



Consumption Decision Rules at Mid-Life With a Two-State
“Unemployment” Process r = 1/0.94− 1, β = 0.90,
γ = 1.5.
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Average Time Path for Assets With “Unemployment”
Model r = 1/0.94− 1, γ = 1.5.
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Average Time Path for Consumption With
“Unemployment” Model r = 1/0.94− 1, γ = 1.5
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Buffer Stock Consumption Behaviour

It isn’t surprising that the “patient” households (those with β > 0.94 in this
case) build up asset stocks: They also did so in the model without uncertainty.

But impatient households (β < 0.94 in this case) are behaving differently. On
average, we see them building up a stock of assets that is only run down late
in life.

This phenomenon was labelled “buffer stock saving” in a famous 1992 paper
by Chris Carroll.

To give a sense of how buffer-stock households behave, the next few charts
show 10 sample lifetime paths for assets and consumptions from a simulation
of this model with β = 0.9.

We see those who get lucky and largely avoid unemployment quickly build up
a buffer stock of savings and maintain constant consumption and savings.
Those who get hit with spells of unemployment reduce consumption while
unemployed, using their buffer to finance spending, and then look to build
their buffers back up.

Averaging over all of this behaviour gives the smooth profiles for assets and
consumption for β = 0.9 that we saw in the previous charts.
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Sample Time Paths for Assets r = 1/0.94− 1, β = 0.90,
γ = 1.5
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Sample Time Paths for Consumption r = 1/0.94− 1,
β = 0.90, γ = 1.5.
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Analytics of the Buffer Stock Theory
Where does this buffer stock behaviour emerge from?

The analytics of the buffer stock behaviour can be explained using the
consumption Euler equation. In this model, the Euler equation is

U ′ (Ct) = β (1 + r)Et (U ′ (Ct+1))

We discussed before how, for utility functions displaying “prudence” (positive
third derivatives) like the one we are using, we have

Et [U ′ (Ct+1)] > U ′ (EtCt+1)

and the difference between the two sides increases as the uncertainty increases.

Note that the uncertainty that matters is driven by uncertainty about next
period’s level of consumption. Households that have built up their savings
buffer stock can smooth consumption, so they have less uncertainty at time t
about Ct+1 and they can smooth consumption.

But households with insufficient buffers know that another negative shock will
reduce their consumption while a positive shock will increase it. This greater
uncertainty induces a larger upward tilt in consumption, which means lower
consumption today, thus building their buffers back up.
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Wealth Inequality
There has been an increased focus on inequality in recent years.
Macroeconomic models like this can be used to explore the forces driving
inequality.

We will not have time to explore the large literature on macroeconomic
models with heterogenous agent but the building blocks of these models have
similarities to this model.

When we run repeated simulations of the model, we can get a sense of how ex
ante identical households can end up having higher or lower wealth due to
good or bad luck.

For example, the graph on the next page shows the cross-sectional distribution
for our 100,000 simulations of assets at age 30. We can see a big right tail of
people who have been lucky and avoided unemployment.

We could generalise this analysis by including variations in inherited wealth
and explore the extent to which models like this can replicate empirical wealth
distributions.
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Cross-Sectional Distribution of Assets at Age 30 Across
100,000 Time Paths, β = 0.9

Karl Whelan (UCD) Stochastic Dynamic Programming Autumn 2023 31 / 34



Approximating AR(1) Income Processes with Many State
Markov Chains

We can also simulate models like this using AR(1) style income processes.

Earlier we showed how the Rowenhurst method can be used to allow a Markov
chain to approximate an AR(1) process.

The graph on the next page shows the consumption policy rules that emerge
from running our model with a 25-state Markov chain approximating the log
of income as an AR(1) process with ρ = 0.9. In this case, we set β = 1

1+r .

The higher the level of income, the higher the propensity to consume from
cash on hand is.

We also see that MPCs from cash on hand are very high at low levels of cash
on hand and then flatten out fairly dramatically as cash on hand levels rise.

The final graph provides sample paths from a model with 50 income states
and impatient households. Lots of interesting dynamics are evident.
Consumption is smoother than income but there are various occasions when
households have fallen below their buffer stock levels of savings and
consumption moves closely in line with income.
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Mid-Life Consumption Rules for Various Incomes with a
Many-State Markov Process (β = 1

1+r )
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Sample Time Paths for Consumption and Income with a
50-State Markov Process (β = 0.9, r = 1/0.94− 1)
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